Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(24): 21418-21424, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37360477

RESUMO

Supercapacitors play a crucial role in the global shift toward cleaner, renewable energy and away from fossil fuels. Ionic liquid electrolytes have a larger electrochemical window than some organic electrolytes and have been mixed with various polymers to make ionic liquid gel polymer electrolytes (ILGPEs), a solid-state electrolyte and separator combination. One way to improve the conductivity of these electrolytes is to add inorganic materials such as ceramics and zeolites to increase their ionic conductivity. Herein, we incorporate a biorenewable calcite from waste blue mussel shells as an inorganic filler in ILGPEs. ILGPEs composed of 80 wt % [EMIM][NTf2] and 20 wt % PVdF-co-HFP are prepared with various amounts of calcite to determine the effect on the ionic conductivity. The optimal addition of calcite is 2 wt % based on the mechanical stability of the ILGPE. The ILGPE with calcite has the same thermostability (350 °C) and electrochemical window (3.5 V) as the control ILGPE. Symmetric coin cell capacitors were fabricated using ILGPEs with 2 wt % calcite and without calcite as a control. Their performance was compared using cyclic voltammetry and galvanostatic cycling. The specific capacitances of the two devices are similar, 110 and 129 F g-1, with and without calcite, respectively.

2.
Inorg Chem ; 59(20): 15375-15383, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33012167

RESUMO

Chromium diamino-bis(phenolate) complexes, CrXL [where L = 6,6'-((1,4-diazepane-1,4-diyl)bis(methylene))bis(2,4-dimethylphenolato) and X = Cl- (1), OH- (2), and N3- (3)], were prepared and characterized by MALDI-TOF MS and single-crystal X-ray diffraction. Complex 1 crystallized as two linkage isomers, specifically a green chloride-bridged dimer (1) and a pink asymmetrically bridged isomer exhibiting one chloride bridging atom and one bridging phenolate oxygen (1'). Adventitious moisture during sample handling causes the formation of hydroxide-containing complex 2. The reaction of 1 with PPNN3 (where PPN = bis(triphenylphosphine)iminium) permits the isolation of a crystalline chromium azide complex, 3, which was structurally authenticated. Complex 1 showed good activity toward the ring-opening copolymerization of cyclohexene oxide and carbon dioxide with an added chloride, azide, or 4-(dimethylamino)pyridine (DMAP) cocatalyst to give a completely alternating polycarbonate with a narrow molecular weight dispersity.

3.
Dalton Trans ; 49(20): 6884-6895, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32368772

RESUMO

Two series of monometallic aluminum complexes were prepared and characterized by elemental analyses, 1H and 13C{1H} NMR spectroscopy, and X-ray crystallography: Al[L]X, where [L] = dimethylaminoethylamino-N,N-bis(2-methylene-4,6-tert-butylphenolate) and X = Cl, OEt, and Al[L]2Cl, where [L] = 6-{[(2R,6R)-2,6-dimethyl-4-morpholino]methylene}-2,4-bis(tert-butyl)phenolate or 6-(piperidinomethylene)-2-(tert-butyl)-4-(methyl)phenolate. All the complexes, including the previously reported morpholinyl complex Al[L]Cl, where [L] = 4-(2-aminoethyl)morpholinylamino-N,N-bis(2-methylene-4,6-tert-butylphenolate), were tested as catalysts for copolymerization of cyclohexene oxide and CO2 in the presence and absence of PPNCl. When coupled with 1 equiv. PPNCl, the complexes exhibit similar activities and the best selectivity for poly(cyclohexenecarbonate) vs. the cyclic product, cyclohexene carbonate, was obtained with the morpholinyl complex (ca. 90%) whereas significantly lower selectivities (<1-63%) were obtained with the other complexes. Preliminary DFT calculations investigating this difference in selectivity were carried out by analyzing the aluminum partial atomic charges in the Al-carbonate intermediates.

4.
Inorg Chem ; 58(16): 11231-11240, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31369254

RESUMO

A family of 17 iron(III) aminobis(phenolate) complexes possessing different phenolate substituents, coordination geometries, and donor arrangements were used as catalysts for the reaction of carbon dioxide (CO2) with epoxides. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of the iron complexes with a bis(triphenylphosphine)iminium chloride cocatalyst in negative mode revealed the formation of six-coordinate iron "ate" species. Under low catalyst loadings (0.025 mol % Fe and 0.1 mol % chloride cocatalyst), all complexes showed good-to-excellent activity for converting propylene oxide to propylene carbonate under 20 bar of CO2. The most active complex possessed electron-withdrawing dichlorophenolate groups and for a 2 h reaction time gave a turnover frequency of 1240 h-1. Epichlorohydrin, styrene oxide, phenyl glycidyl ether, and allyl glycidyl ether could also be transformed to their respective cyclic carbonates with good-to-excellent conversions. Selectivity for polycarbonate formation was observed using cyclohexene oxide, where the best activity was displayed by trigonal-bipyramidal iron(III) complexes having electron-rich phenolate groups and sterically unencumbering tertiary amino donors. Those containing bulky tertiary amino ligands or those with square-pyramidal geometries around iron showed no activity for polycarbonate formation. While the overall conversions declined with decreasing CO2 pressure, CO2 incorporation remained high, giving a completely alternating copolymer. The difference in the optimum catalyst reactivity for cyclic carbonate versus polycarbonate formation is particularly noteworthy; that is, electron-withdrawing-group-containing phenolates give the most active catalysts for propylene carbonate formation, whereas catalysts with electron-donating-group-containing phenolates are the most active for polycyclohexene carbonate formation. This study demonstrates that the highly modifiable aminophenolate ligands can be tailored to yield iron complexes for both CO2/epoxide coupling and ring-opening copolymerization activity.

5.
Inorg Chem ; 58(8): 5253-5264, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30946579

RESUMO

The first structures exhibiting bidentate (N, O) chelation of a morpholine group to a p-block element (aluminum) have been prepared and characterized by X-ray diffraction methods: Al[L]+ [WCA]-, where [L] = 4-(2-aminoethyl)morpholinylamino- N, N-bis(2-methylene-4,6- tert-butylphenolate) and [WCA]- is a weakly coordinating anion. These compounds are easily synthesized by reacting Al[L]Cl with an equimolar amount of anhydrous Lewis acid and were characterized by elemental analyses, ESI-MS, MALDI-TOF MS, 1H, 13C{1H}, and multinuclear NMR spectroscopy. DFT calculations showed that Al[L]+ cations containing bidentate NO coordination of the morpholine group are at least 21.1 kJ/mol more stable when compared to hypothetical monodentate (N bound) structures. When combined with protic co-initiators (EtOH, glycerol carbonate), the cationic complexes, where [WCA]- = [GaCl4]- or [InCl4]-, are living catalyst systems for the polymerization of ε-caprolactone, producing polycaprolactone with narrow dispersity ( D̵ = 1.00-1.05). Employing glycidol as a co-initiator furnished polymers with narrow dispersity ( D̵ = 1.01-1.07) but experimental molecular weights diverged considerably from the calculated values. Similar reactivity toward ROP was observed for all complexes containing a stable [WCA]- but where [WCA]- = [AlCl4]-, upon combination with alcohols, alcoholysis was observed. Kinetic studies (Eyring analyses) allowed the determination of activation parameters, which were consistent with a coordination-insertion mechanism for the catalysts containing [WCA]- = [GaCl4]- or [InCl4]-. End group analyses using MALDI-TOF mass spectrometry and 1H NMR spectroscopy showed hydroxyl and ester end groups within the polymer, corroborating the proposed mechanism. Stoichiometric reactions of EtOH, glycidol or tert-butyl alcohol with the complex, where [WCA]- = [GaCl4]-, showed protonation of the ligand at the N-morpholine site, which leads to dissociation of this pendent group.

6.
Inorg Chem ; 57(21): 13494-13504, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30351088

RESUMO

A series of iron(III) chloride and iron(III) µ-oxo compounds supported by tetradentate amino-bis(phenolate) ligands containing a homopiperazinyl backbone were prepared and characterized by electronic absorption spectroscopy, magnetic moment measurement, and MALDI-TOF mass spectrometry. The solid-state structures of three iron(III) µ-oxo compounds were determined by single crystal X-ray diffraction and revealed oxo-bridged bimetallic species with Fe-O-Fe angles between 171.7 and 180°, with the iron centers in distorted square pyramidal environments. Variable temperature magnetic measurements show the oxo complexes exhibit strong antiferromagnetic coupling between two high-spin S = 5/2 iron(III) centers. The oxo complexes exhibit poor activity for the reaction of carbon dioxide and epoxides in the presence of a cocatalyst, under solvent free conditions to yield cyclic carbonates. The least active iron oxo compound bears tert-butyl groups on the phenolate donors, and we propose that steric congestion around the iron center reduces catalytic activity in this case. We provide evidence that an epoxide deoxygenation step occurs when employing monometallic iron(III) chlorido species as catalysts. This affords the corresponding µ-oxo compounds which can then enter their own catalytic cycle. Deoxygenation of epoxides during their catalytic reactions with carbon dioxide is frequently overlooked and should be considered as an additional mechanistic pathway when investigating catalysts.

7.
J Phys Chem B ; 119(42): 13422-32, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26419599

RESUMO

Bromomethane (CH3Br) is an acutely toxic environmental pollutant that contributes to ozone depletion. Molecular simulation could be a valuable tool for studying its partitioning and transport in the environment if an accurate molecular model was available. The generalized Amber force field (GAFF), OPLS (optimized potentials for liquid simulations) force field, and CHARMM general force field (CGenFF) were tested for their ability to model the physical properties of liquid bromomethane. The OPLS force field was in fairly good agreement with experiment, while CGenFF and GAFF were significantly in error. The Br Lennard-Jones parameters of the GAFF and CGenFF models were reparameterized, but their radial distribution functions still have significant deviations from those calculated by ab initio molecular dynamics (AIMD). A Drude polarizable force field for bromomethane was parametrized with an off-center positively charged site to represent the C-Br σ-hole. This model is in good agreement with the bulk physical properties and the AIMD RDFs. The modest solubility of bromomethane was reproduced by this model, with dispersion interactions being the dominant water-solute interaction. The water-solute electrostatic interactions are a smaller factor in solubility. This model predicts bromomethane to have a 13 kJ mol(-1) surface excess potential at the water-vapor interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...